

<u>Liver Investigation: Testing Marker Utility in Steatohepatitis</u>

Prof Quentin M. Anstee PhD, FRCP

Project Coordinator (Newcastle University, UK)

Dr Carla Yunis PhD

Project Lead (Pfizer, USA)

Liver Investigation: Testing Marker Utility in Steatohepatitis (LITMUS)

FACTS & FIGURES

 Start Date
 01/11/2017

 End Date
 31/10/2023

 Call
 IMI2 - Call 9

 Grant agreement number
 777377

Type of Action:

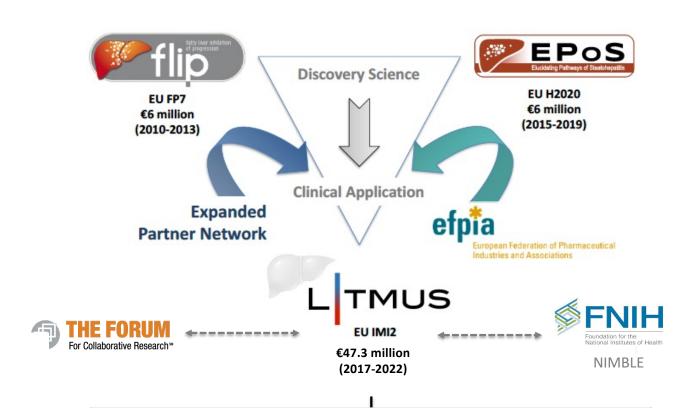
RIA (Research and Innovation Action)

 Contributions
 €

 IMI Funding
 15 797 881

 EFPIA in kind
 25 427 538

 Other
 6 055 988


 Total Cost
 47 281 407

Project website: Twitter:

www.litmus-project.eu @LITMUS_IMI

Coordinator: Prof Quentin M. Anstee

Liver Investigation: Testing Marker Utility in Steatohepatitis (LITMUS)

FACTS & FIGURES

Start Date 01/11/2017
End Date 31/10/2023
Call IMI2 - Call 9
Grant agreement number 777377

Type of Action:

RIA (Research and Innovation Action)

 Contributions
 €

 IMI Funding
 15 797 881

 EFPIA in kind
 25 427 538

 Other
 6 055 988

 Total Cost
 47 281 407

Project website: Twitter:

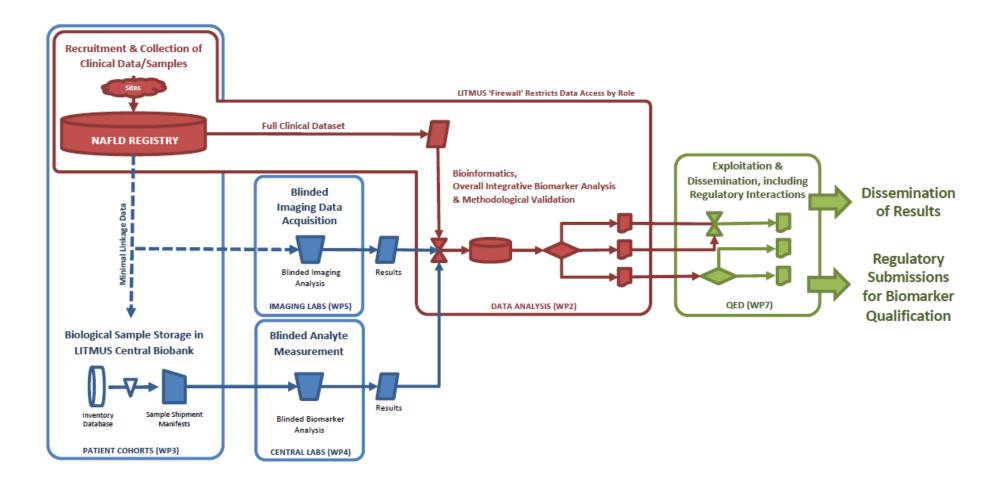
www.litmus-project.eu @LITMUS_IMI

Coordinator: Prof Quentin M. Anstee

54 Partners

- 30 Academic,
- 23 EFPIA/Industrial,
- 1 Professional body

14 Countries for Clinical Recruitment

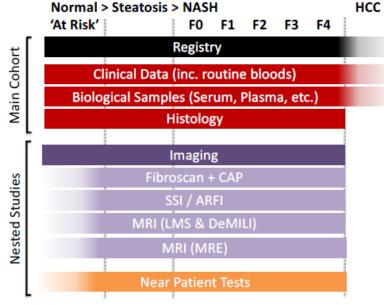

 UK, France, Germany, Italy, Switzerland, Netherlands, Austria, Luxembourg, Sweden, Finland, Greece, Spain, Portugal, USA

True Public-Private co-funding model

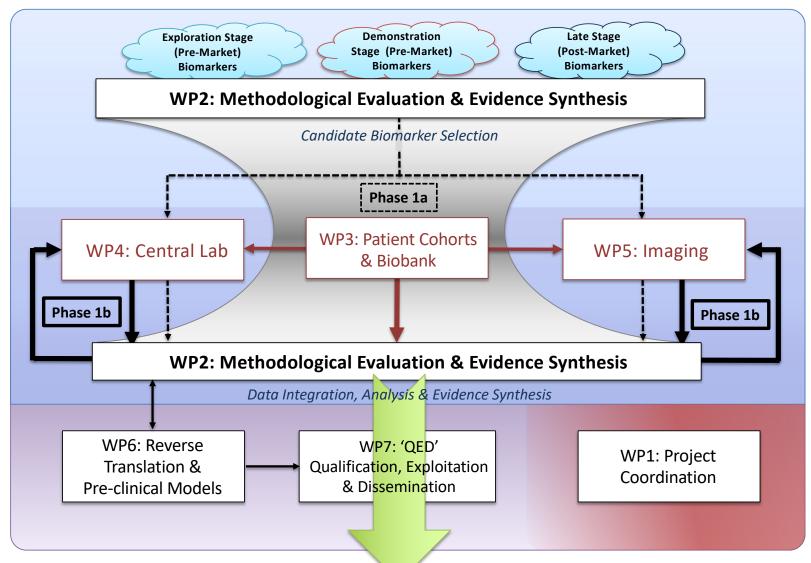
 Effective budget approximately €47.3 million (includes >€23 million 'cash' from EU & Industry)

The ultimate goal is to establish a defined set of biomarkers that, singly or in combination, enable detection and monitoring of disease progression to and/or regression from NAFL through NASH to fibrosis and cirrhosis.

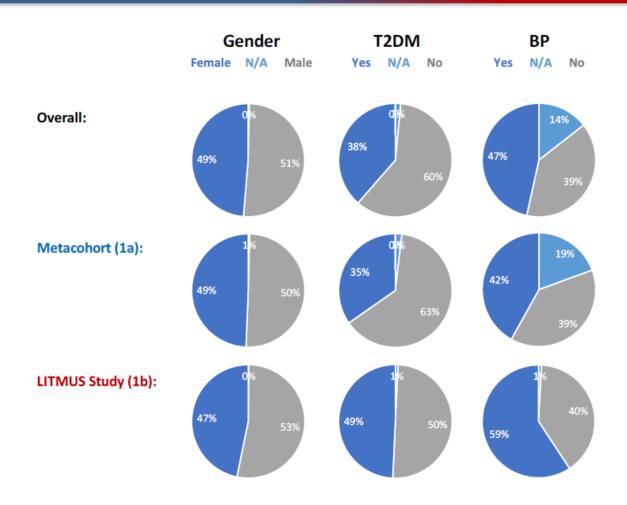
LITMUS has implemented a robust 'technology-unbiased' platform to conduct the systematic study and validation of a broad range of non-invasive biomarkers and imaging technologies with reference to fully-adjudicated liver biopsy data.



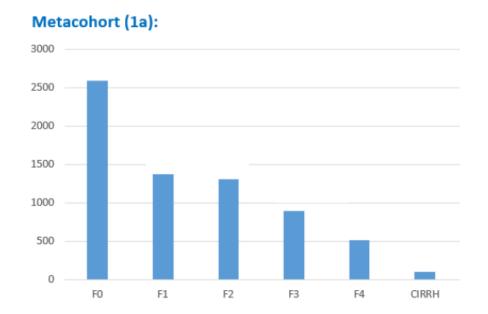
Strong Focus on Robust Data Quality & Technical/Analytic Standards

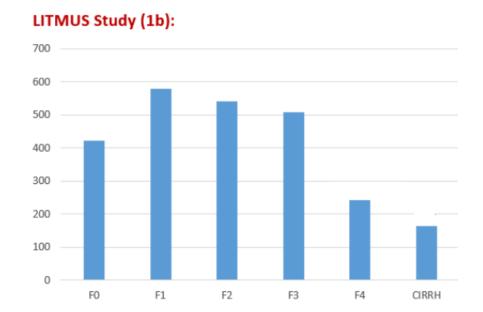


- Unified Protocol across 13 countries.
- Comprehensive Clinical Dataset (CDISC-ready database):
 - · All routinely available clinical data
 - · Cross-sectional & Longitudinal/Outcome data
 - PROs
- Robust Quality Management Framework using a risk-based approach that combines iterative Remote and On-site source data verification processes.
- · Central reading of liver biopsies by the LITMUS Pathology Group.
- · Clearly defined chain of custardy for biological samples.
- Preanalytical variation minimised through standardised sample collection/handling at sites and in LITMUS Central Biobank.
- LITMUS Central Laboratory conducted Technical Validation & QC reports for key biomarkers assessed:
 - Precision & Accuracy
 - Sensitivity
 - Linearity, etc
 - CLSI validation for some



NAFLD Registry - Recruitment Summary





NAFLD Registry - Recruitment Summary

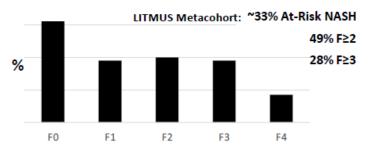
Fibrosis Stage Distribution

Disease severity distribution representative of the target secondary/tertiary care setting for clinical trial recruitment

Similarities & Differences in Approach to Biomarker Validation in LITMUS & NIMBLE

LITMUS

Target Conditions


- Clinically Significant Fibrosis (F≥2)
- Advanced Fibrosis (F≥3)
- At-Risk NASH (NAS≥4 + F≥2)

Acceptable Performance Threshold

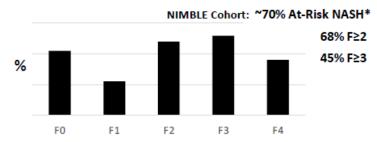
- AUROC ≥0.8
- Comparator FIB4

Population

'Left Skew' Fibrosis Distribution (as in 2º/3º care)

NIMBLE

Target Conditions


- Clinically Significant Fibrosis (F≥2)
- Advanced Fibrosis (F≥3)
- NASH (NAS≥4)

Acceptable Performance Threshold

- AUROC ≥0.7 (+ significantly >0.5)
- Comparator FIB4 (ALT for NASH)

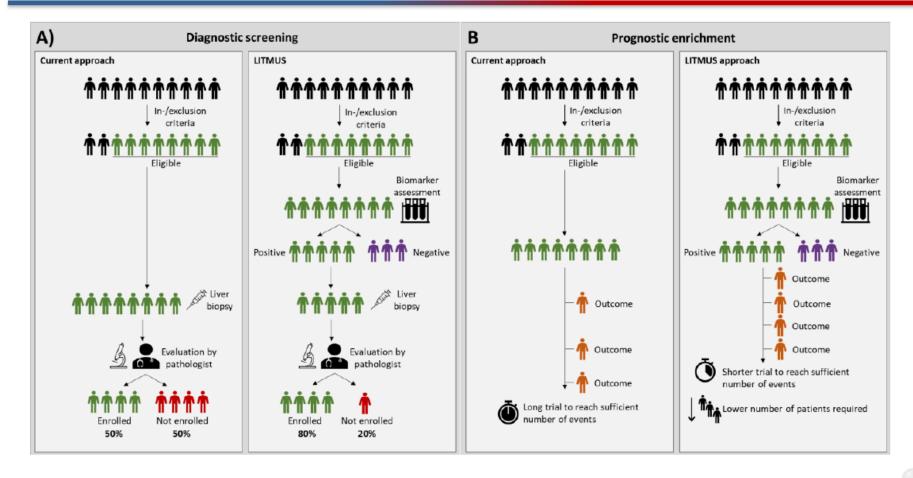
Population

'Right Skew' Fibrosis Distribution*

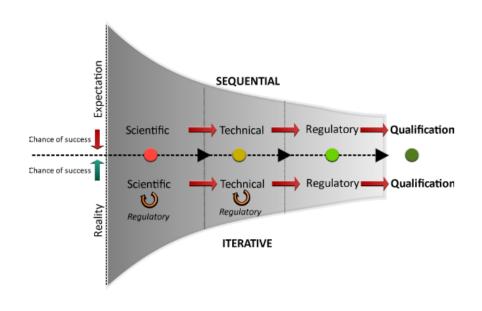
LITMUS Progress Across Key Domains

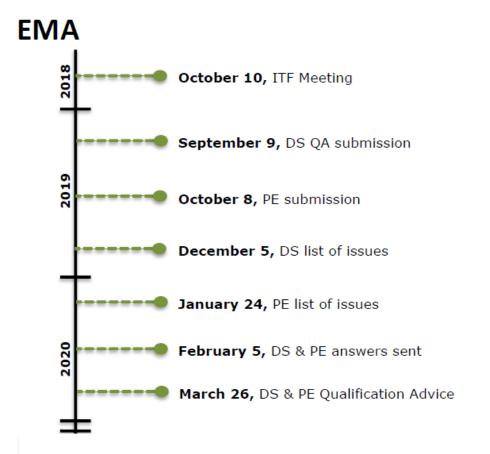
Regulatory Qualification

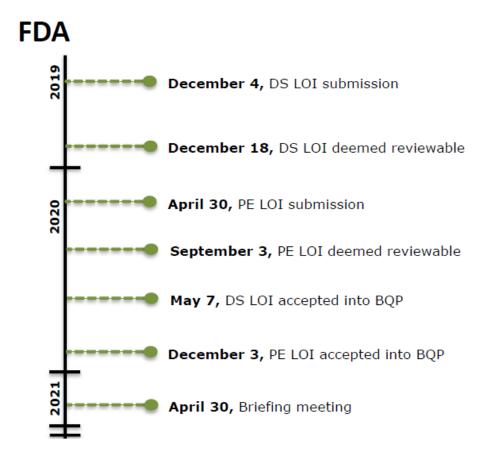
Biomarker Performance & Validation


Biomarker Discovery

Pre-Clinical Model
Validation & Consensus


Regulatory Interactions – LITMUS' Experiences


Regulatory Interactions – LITMUS' Experiences



- The biomarker qualification process is a collaborative and iterative effort, where the agency staff works with the requestor in guiding biomarker development.
- Feedback from agencies focuses on five key categories: biomarker, context of use (COU), technical and analytical, clinical, and statistical.
- For biomarker qualification, the biomarker will ultimately be qualified independent of the measurement method used to assess the biomarker.
- The cohorts used for biomarker qualification need to be representative of the intended use population and contain a sufficient sample size to allow meaningful data to be produced to support the COU.

DS = Diagnostic screening **PE** = Prognostic enrichment

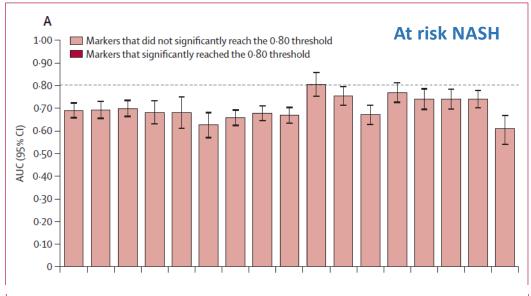
ITF = Innovation Task Force QA = Qualification Advice

FDA Letters of Intent Accepted

- DDTBMQ000095 (May 2020)
 - Context of Use: Diagnostic Screening
 - Two 'indicative' biomarkers
 - Single 'Wet' Biomarker: PRO-C3
 - Imaging/Composite Biomarker: FAST Score (VCTE+CAP+AST)
- DDTBMQ000106 (December 2020)
 - Context of Use: Prognostic Enrichment
 - Two 'indicative' biomarkers
 - 'Wet'/Composite Biomarker: ELF Test
 - Single Imaging Biomarker: cT1

LITMUS Progress Across Key Domains

Regulatory Qualification


Biomarker Performance & Validation

Biomarker Discovery

Pre-Clinical Model
Validation & Consensus

B 1.00 0.90 0.80 0.70 0.60 0.50 0.50 0.20 0.20 0.20 0.20

APRI ELY

PROCLA

MES

5 CS C6

, MACK-3

(202013

ISM. VCTE

HBC ABOS

0.10 -

4.28 M30 M65

ging fibrosis and non-alcoholic non-alcoholic fatty liver disease (the comparative diagnostic accuracy study

Salvatore Petta, Kristy Wonders, Dina Tiniakos, Pierre Bedossa, Andreas Geier, Sven Francque, ena Cortez-Pinto, Raluca Pais, Jean-Francois Dufour, Diana Julie Leeming, Stephen A Harrison,

966 Patients incl.

335 at-risk NASH 28% advanced fibrosis

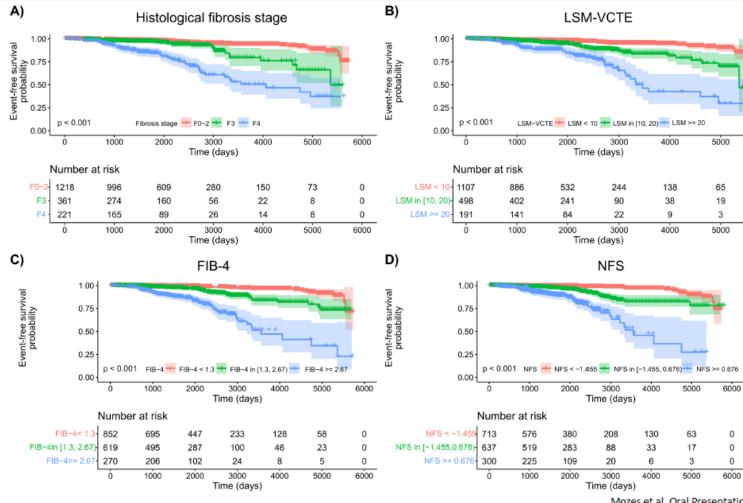
Comparative Accuracy for Pre-Screening to Detect At-Risk NASH in Clinical Trials

Marker	Threshold	Sensitivity	Specificity	Number of positive patients undergoing biopsy (Per 100)	Number of eligible patients found (Per 100)	Number needed to test
SomaSignal	0.06	0.67 (0.59 – 0.75)	0.82 (0.59 – 0.75)	35 (30 – 40)	24 (20 – 26)	4 (4 – 5)
ADAPT	6.91	0.47 (0.39 – 0.55)	0.88 (0.83 - 0.91)	24 (21 – 28)	16 (14 – 19)	6 (5 – 7)
MACK-3	0.53	0.41 (0.34 - 0.48)	0.89 (0.85 – 0.92)	21 (19 – 25)	14 (12 – 17)	7 (6 – 8)
PRO-C3	24.05 ng/ml	0.33 (0.25 - 0.40)	0.92 (0.88 - 0.94)	17 (14 – 20)	11 (9 – 14)	9 (7 – 11)
FIBC-3	0.84	0.28 (0.21 – 0.35)	0.93 (0.89 - 0.96)	14 (11 – 18)	10 (7 – 12)	10 (8 – 14)
CK-18 M30	573.80 IU/L	0.25 (0.20 - 0.30)	0.93 (0.91 – 0.95)	13 (11 – 15)	9 (7 – 11)	11 (9 – 14)
Cao 2013	1.74	0.22 (0.17 - 0.28)	0.94 (0.92 - 0.96)	12 (9 – 14)	8 (6 – 10)	13 (10 – 16)
PRO-C6	14.25 ng/ml	0.18 (0.11 - 0.26)	0.96 (0.91 – 0.98)	9 (6 – 13)	6 (4 – 9)	16 (11 – 26)
PRO-C4	433.35 ng/ml	0.12 (0.08 - 0.18)	0.97 (0.94 – 0.99)	6 (4 – 9)	4 (3 – 6)	23 (16 – 37)
CK-18 M65	1283.55 IU/L	0.12 (0.09 - 0.16)	0.97 (0.95 – 0.98)	6 (5 – 8)	4 (3 – 6)	24 (17 – 33)
No marker	-	-	-	100	35	-

	Sensitivity (%)	Specificity (%)	Youden index	AUROC	Significance
				(95% CI)	(versus ALT or FIB4)
NASH diagnosis					
ALT	63.2	64.8	0.28	0.678 (0.639, 0.717)	
NIS4	77.7	76.2	0.539	0.832 (0.801, 0.864)	<0.001
OWL	77.3	66.8	Categorical data computed	AUROC cannot be	
NAS ≥4					
ALT	71.1	64.1	0.352	0.726 (0.694, 0.759)	
NIS4	78.1	73.6	0.517	0.815 (0.786, 0.844)	<0.001
At-risk NASH					
ALT	71.1	64.1	0.352	0.726 (0.694, 0.759)	
FIB4	76.4	58.4	0.349	0.704 (0.671, 0.737)	
NIS4	78.1	73.6	0.517	0.815 (0.786, 0.844)	<0.001
Fibrosis stage ≥2					
FIB4	65.6	80.6	0.462	0.798 (0.768, 0.828)	
ELF	71.8	81.5	0.533	0.828 (0.08, 0.857)	0.013
NIS4	82.3	79.9	0.622	0.874 (0.848, 0.899)	<0.001
PROC3	69.8	81	0.507	0.809 (0.779, 0.839)	0.279
FibroMeter VCTE	66.7	86.4	0.53	0.841 (0.796, 0.886)	<0.001
Fibrosis stage ≥3					
FIB4	70.3	72.4	0.427	0.789 (0.758, 0.819)	
ELF	80.8	70.2	0.509	0.835 (0.807, 0.863)	<0.001
NIS4	72.9	74.8	0.476	0.788 (0.757, 0.820)	0.615
PROC3	71.4	71.4	0.428	0.764 (0.732, 0.795)	0.947
FibroMeter VCTE	76.2	81.3	0.575	0.858 (0.814, 0.902)	<0.001
Fibrosis stage 4					
FIB4	84.7	62.9	0.476	0.810 (0.770, 0.850)	
ELF	82.1	73.3	0.555	0.855 (0.818, 0.892)	<0.001
NIS4	78.1	61.4	0.395	0.725 (0.681, 0.760)	1
PROC3	66.2	68.5	0.346	0.728 (0.685, 0.770)	1
FibroMeter VCTE	94.2	70.4	0.646	0.897 (0.843, 0.951)	0.002

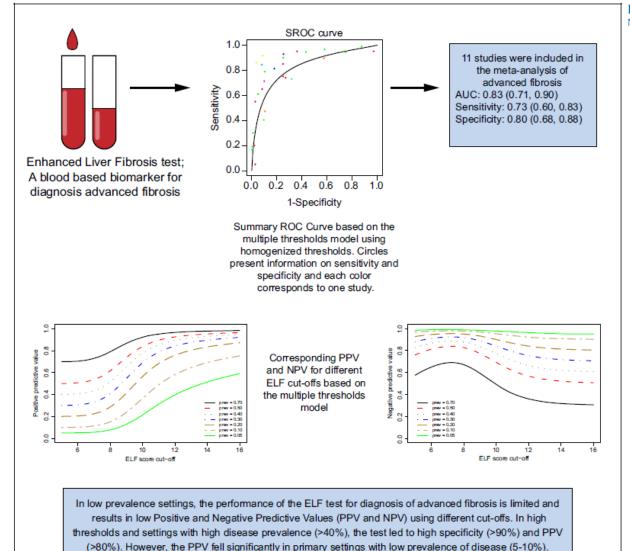
Sanyal, FNIH Nature Med 2023

Evidence Generation to Support Prognostic Enrichment Context of Use


- Individual participant data metaanalysis
- Included studies with baseline LSM-VCTE, FIB4, NFS and liver histology performed within 6 months
- Follow-up period of at least 12 months from baseline
- Composite endpoint of all-cause mortality and/or liver outcomes:
 - Decompensation of cirrhosis
 - Hepatocellular cancer
 - Liver transplantation
 - MELD score > 14 or histological progression to cirrhosis
- Cox proportional hazards regression
 - Univariate
 - Multivariate (adjusted for age, BMI, sex, presence of T2DM)

	Entire group	Participants who reached the composite endpoint		
Number of participants	2518	145 (5,8%)		
Median follow-up (months)	64 (54)	65 (60)		
Age (years)	53 (13)	62 (14)		
BMI (kg/m ²)	29 (5)	29 (7)		
BMI \geq 30 kg/m ² (%)	39	41		
T2DM (%)	50	62		
Fibrosis stages (F0/F1/F2/F3/F4), %	20% F1 F2 F3 F4	10% F1 F1 F2 F3 F3 F4		

LSM-VCTE, FIB4 & NFS Have Prognostic Utility



Diagnostic accuracy of elastography and magnetic resonance imaging in patients with NAFLD: A systematic review and meta-analysis

Emmanuel Anandraj Selvaraj^{1,2,3,†}, Ferenc Emil Mózes^{1,†}, Arjun Narayan Ajmer Jayaswal^{1,†},

AUROC for	VCTE	MRE	pSWE	2DSWE
Significant fibrosis	0,91	0,91	0,86	0,75
Advanced fibrosis	0,85	0,92	0,89	0,72
Cirrhosis	0,89	0,90	0,90	0,88

Research Article
NAFLD and Alcohol-Related Liver Diseases

Enhanced liver fibrosis test for the non-invasive diagnosis of fibrosis in patients with NAFLD: A systematic review and meta-analysis

Yasaman Vali^{1,*}, Jenny Lee¹, Jérôme Boursier^{2,3}, René Spijker^{4,5}, Jürgen Löffler⁶, Joanne Verheij⁷, M. Julia Brosnan⁸, Zsolt Böcskei⁹, Quentin M. Anstee^{10,11}, Patrick M. Bossuyt¹, Mohammad Hadi Zafarmand¹, and the LITMUS systematic review team[†]

PLOS ONE

RESEARCH ARTICLE

Accuracy of cytokeratin 18 (M30 and M65) in detecting non-alcoholic steatohepatitis and fibrosis: A systematic review and meta-analysis

Jenny Lee® 1*, Yasaman Vali® 1, Jérôme Boursier^{2,3}, Kevin Duffin 1, Joanne Verheij 5, M. Julia Brosnan 1, Koos Zwinderman 1, Quentin M. Anstee® 7, Patrick M. Bossuyt 1, Mohammad Hadi Zafamand 1

Review

FibroTest for Evaluating Fibrosis in Non-Alcoholic Fatty Liver Disease Patients: A Systematic Review and Meta-Analysis

Yasaman Vali ^{1,*©}, Jenny Lee ¹©, Jérôme Boursier ^{2,3}, René Spijker ^{4,5}©, Joanne Verheij ⁶, M. Julia Brosnan ⁷, Quentin M. Anstee ^{8,6}©, Patrick M. Bossuyt ¹, Mohammad Hadi Zafarmand ¹ and on behalf of the LITMUS Systematic Review Toan ⁴.

Review

Systematic Review with Meta-Analyses: Diagnostic Accuracy of FibroMeter Tests in Patients with Non-Alcoholic Fatty Liver Disease

Anne-Marieke van Dijk ^{1,*}⁽⁰⁾, Yasaman Vali ²⁽⁰⁾, Anne Linde Mak ¹, Jenny Lee ², Maarten E. Tushuizen ³⁽⁰⁾, Mohammad Hadi Zafarmand ², Quentin M. Anstee ⁴⁽⁰⁾, M. Julia Brosnan ⁵, Max Nieuwdorp ¹, Patrick M. Bossuyt ² and Adriaan G. Holleboom ¹

LITMUS Progress Across Key Domains

Regulatory Qualification

Biomarker Performance & Validation

Biomarker Discovery

Pre-Clinical Model
Validation & Consensus

An Integrated Multi-Omics Strategy for Biomarker Discovery

Genome-wide genetic variation profiling

 Anstee, Q.M., et al. Genome-wide association study of non-alcoholic fatty liver and steatohepatitis in a histologically characterised cohort. J Hepatol 73, 505-515 (2020).

Hepatic Transcriptomic profiling

Govaere, O., et al. Transcriptomic profiling across the nonalcoholic fatty liver disease spectrum reveals gene signatures for steatohepatitis and fibrosis. Sci Transl Med 12, eaba4448 (2020).

Circulating epigenetic variation profiling

- Cell-free DNA methylation profiling
 - Data on file
- miRNA expression profiling
 - Johnson, K., et al. Increased serum miR-193a-5p during non-alcoholic fatty liver disease progression: Diagnostic and mechanistic relevance. JHEP Rep 4, 100409 (2022).

Circulating Proteomic profiling

 Goveare et al, Proteo-transcriptomics identifies circulating protein signatures associated with disease activity in Non-alcoholic Fatty Liver Disease, (2022), submitted.

· Circulating Metabolomic/Lipidomic profiling

- McGlinchey, A.J., et al. Metabolic signatures across the full spectrum of non-alcoholic fatty liver disease. JHEP Rep 4, 100477 (2022).
- Sen, P., et al. Quantitative modeling of human liver reveals dysregulation of glycosphingolipid pathways in nonalcoholic fatty liver disease.
 iScience 25, 104949 (2022).

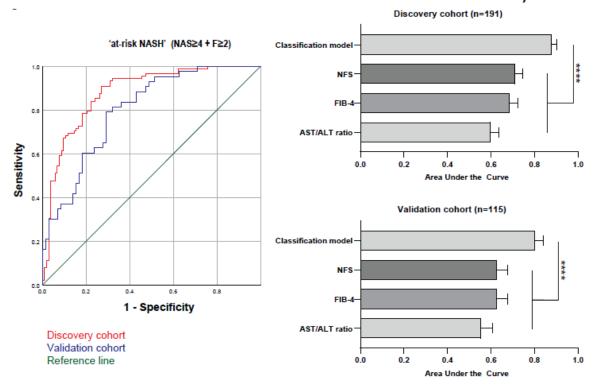
Circulating Proteomic Biomarker Signatures

Correlation to Hepatic Gene Expression in 52 SOMAscan (v.4.0) in 191 Dynamic protein expression **Model Building** paired liver tissue samples to establish 'Discovery' NAFLD samples changes as disease progresses & Validation source (plus scRNAseg cellular NASH F2 Advanced fibrosis F3-4 Plasma proteome 20 Analysis F3-4 only Hepatic mRNA NAS≥ 4 only 117 proteins identified SHBG 8 PZP Differentially expressed plasma proteins Advanced fibrosis F3-4 NAS ≥ 4 87 ADAMTSL2 30 proteins in common CFHR4 NAS ≥ 4 AKR1B10 CHI3L1 APOA5 CLSTN2 TNERSE118 MEAP4 GOLM1 p-value < 0.01 LGALS3RE 52 proteins identified -0.5 0.5 1.0 correlation coefficent 194 genes/proteins correlation between blood/liver. 31 differentially expressed with F≥3/NAS≥4 (8 in both). Newcastle University LTMUS

Goveare et al, Proteo-transcriptomics identifies circulating protein signatures associated with disease activity in Non-alcoholic Fatty Liver Disease, in review.

Circulating Proteomic Biomarker Signatures

SOMAscan (v.4.0) in 191 'Discovery' NAFLD samples


Dynamic protein expression changes as disease progresses

Correlation to Hepatic Gene Expression in 52 paired liver tissue samples to establish source (plus scRNAseq cellular deconvolution)

Model Building & Validation

LITMUS Progress Across Key Domains

Regulatory Qualification

Biomarker Performance & Validation

Biomarker Discovery

Pre-Clinical Model
Validation & Consensus

Comparative Biology & The LITMUS 'Human Proximity Score'

PHENOTYPE "Human Proximity Score" (PHPS)

Metabolic Syndrome & Obesity as NAFLD drivers

Body composition (obesity, liver:body wt ratio)

Biochemistry (ALT, AST)

Carbohydrate metabolism (Glucose/Insulin resistance)

· Lipid metabolism

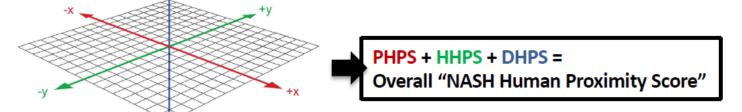
HISTOLOGY "Human Proximity Score" (HHPS)

- Presence of key histological features (ie NASH + progressive Fibrosis)
- Sufficient disease grade/stage
- Acceptable disease progression timescale

LITMUS Preclinical Model Biobank

- 42 Murine Models
- 617 Animals

With

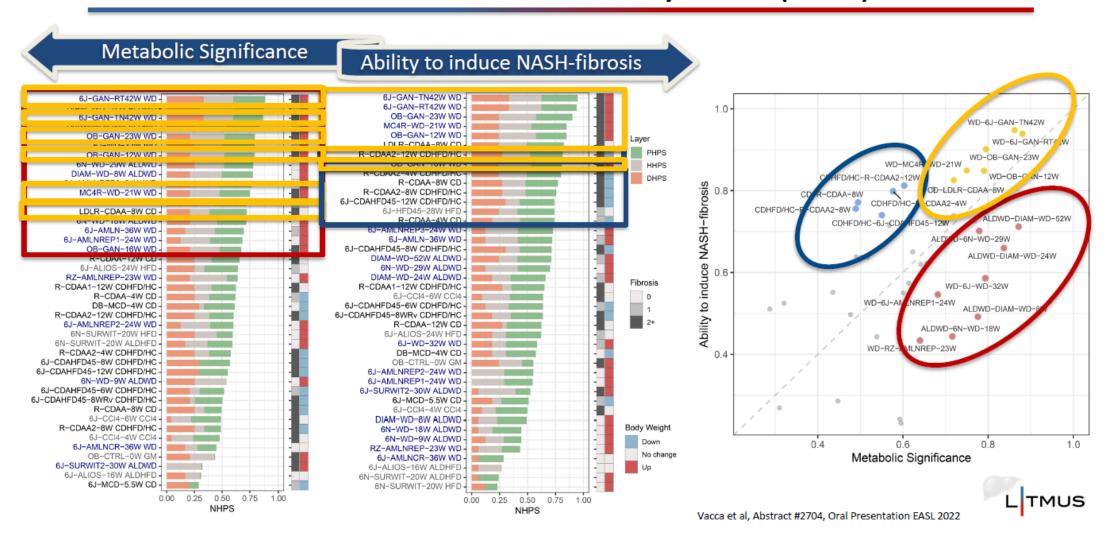

- Phenotype
- Centralised Histology
- NGS
- Frozen tissues

High Fat Diets (HFD)

Western Diets (WD) AKA "Atherogenic"

American Lifestyle Diets (ALD)

Choline Deficient Diets (CD)

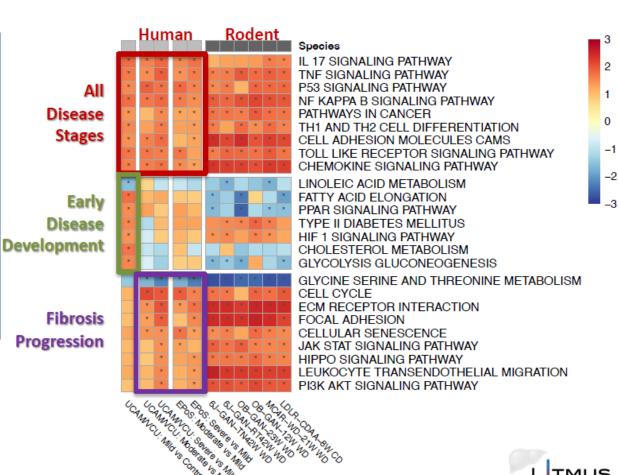

DRUG SET ENRICHMENT ANALYSIS "Human Proximity Score" (DHPS)

- Recapitulates molecular events occurring in humans
- RNASeq transcriptomic analysis (cf human data: Govaere, 2020; Cazanave 2017, etc)
- Consideration of inflammatory/fibrotic & metabolic signatures

Overall NASH "Human Proximity Score" (NHPS)

NASH "Human Proximity Score" – Models Highly Ranked

WD2%Chol ("Gubra Amylin NASH" - GAN)


- RD D09100310
- WT(42Weeks) or ob/ob (12/23 Weeks)

WD0.2%Chol ("Atherogenic")

- RD D12079B
- MC4R KO (21 Weeks) but not in WT!

CD ("Choline-deficient L-amino-defined" - CDAA)

- RD A08111307
- LDLR KO mice (8 Weeks) but not in WT!

Conclusions

- LITMUS is a focused, pragmatic and goal-oriented programme, founded on a strong track-record
 of NAFLD research, that addresses the pressing need for validated non-invasive biomarkers.
- The LITMUS ambition is to make a fundamental difference to the way NAFLD/NASH is diagnosed, clinical trials are conducted and the way patients are managed.

LITMUS has the demonstrable capacity to provide much needed clarity on biomarker validity at scale and pace and thus deliver a step change in drug development and the care of patients with NAFLD

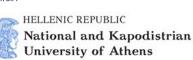
 LITMUS has made rapid progress across both the clinical platform and the evaluation platform – further outputs expected in coming months.



UNIVERSITÄT

HISTOINDEX

New Standard | New Life



© SomaLogic

Servicio Andaluz de Salud **CONSEJERÍA DE SALUD**

